

C14415 (CuSn0.15)

18 08 US

Comparable standards: UNS C14415 • EN CW117C • JIS - Aurubis designations: C14415 • PNA216 • SM0702

Description

CuSn0.15 is a solid solution strengthened copper alloy by adding tin resulting in high electrical and thermal conductivity. Due to the relatively high strength it is primarily used for the manufacture of lead frames and plug-in connector pins.

CuSn0.15 has good corrosion-resistance and is resistant against stress corrosion cracking.

Composition

Cu*	Sn		
[%]	[%]		
99.96 min	0.10 - 0.15		

^{*)} includes Cu+Ag+Sn

Physical properties

Melting point	Density	Specific heat cap. at 20°C	Electrical cond.	Thermal cond. at 20°C	Mod. of elasticity	Coef. of therm exp. at 20°C
[°F]	[lb/in³]	[Btu/lb°F]	[%IACS]	h °F]	x1000 ksi	[10 ⁻⁶ /°F]
[°C]	[g/cm³]	[kJ/kgK]	[MS/m]	[W/mK]	[GPa]	[10 ⁻⁶ /K]
1978	0.323	0.092	84	202	18.9	10.0
1081	8.93	0.385	49	350	130	18.0

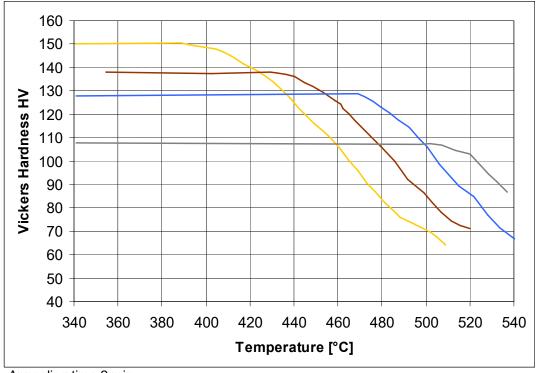
The specified conductivity applies to the soft condition only

Mechanical properties

	Tensile strength Rm	Yield strength Rp0.2 min	Elongation 2" min	Hard- ness HV	min l rat 90	tio	min. ra 18	tio
	[ksi] [MPa]	[ksi] [MPa]	[%]	[-]	GW	BW	GW	BW
O50	36-46 250-320	> 29 > 200	9	60-90	0.0	0.0		
H02	44-54 300-370	> 36 > 250	4	85-110	0.0	0.0		
H04	52-62 360-430	> 44 > 300	3	105-130	0.0	0.0		
H06	61-71 420-490	> 51 > 350	2	120-140	1.0	1.0		

Other tempers are available upon request.

GW bend axis transverse to rolling direction. BW bend axis parallel to rolling direction


This leaflet is for general information only. No claims can be derived from it unless there is evidence of intent or gross negligence. The data given are no warranty that the product is of a specified quality and they cannot replace expert advice or the customer's own test.

Fabrication properties

Cold formability	excellent
Soldering	excellent
Laser welding	good
Gas shielded arc welding	excellent
Resistance welding	fair

Heat Resistance and Softening Characteristics

Annealing time 2 min.

Temperatures at 1 min annealing time will be 10 degrees **higher**. Temperatures at 4 min annealing time will be 10 degrees **lower**.

Typical uses Automotive, Electrical engineering, Connectors pins, Lead frames