

C19010 (CuNi1.5Si)

18 08 US

Comparable standards: UNS C19010 • JIS C1901

Aurubis designations: 7036 • PNA290

Description

CuNi1.5Si is a precipitation-hardened copper alloy combining high electrical and thermal conductivity with elevated strength and good stress relaxation resistance. The special process of cold working and heat treatment ensures consistent properties combined with excellent formability. Alloy CuNi1.5Si has good corrosion resistance in industrial atmospheres and is resistant against stress corrosion cracking.

Composition

Cu*	Ni	Si	Р	
[%]	[%]	[%]	[%]	
rem.	0.8 – 1.8	0.15 – 0.35	0.01 – 0.05	

^{*)} Cu + sum of named elements 99.5 % min

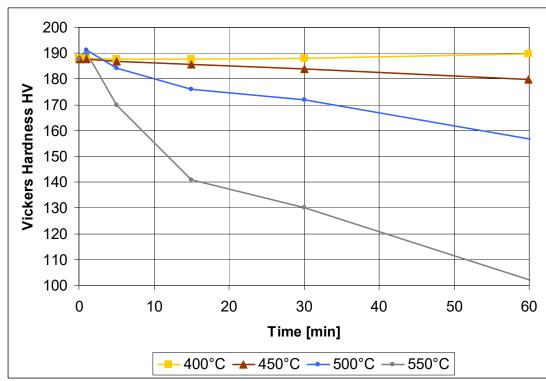
Physical properties

Melting point	Density	Specific heat cap. at 20°C	Electrical cond.	Thermal cond. at 20°C	Mod. of elasticity	Coef. of therm exp. at 20°C
[°F]	[lb/in³]	[Btu/lb°F]	[%IACS]	[Btu/ft h °F]	x1000 ksi	[10 ⁻⁶ /°F]
[°C]	[g/cm³]	[kJ/kgK]	[MS/m]	[W/mK]	[GPa]	[10 ⁻⁶ /K]
1944	0.323	0.09	≥ 50.0	149	18.5	9.3
1062	8.94	0.377	≥ 29.0	258	127	16.8

Mechanical properties

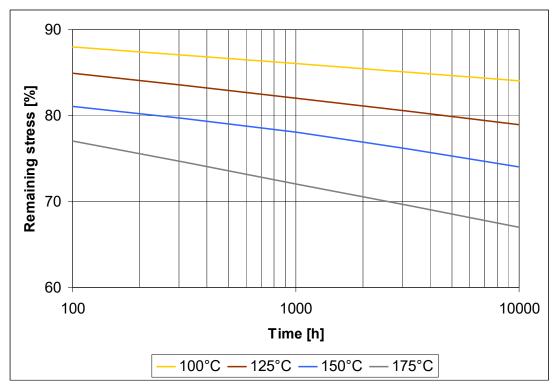
	Tensile strength Rm	Yield strength Rp0.2 min	Elon- gation 2" min	Hard-ness HR30T HV		bend tio 0°	ra	bend tio 80°
	[ksi] [MPa]	[ksi] [MPa]	[%]	[-]	GW	BW	GW	BW
TM06 R520S	75-86 520-590	64 440	9	150-170	0.5	0.5	1.5	2.0
TM08 R580S	84-94 580-650	78 540	8	170-200	0.5	0.5	1.5	2.0

Other tempers are available upon request.


GW bend axis transverse to rolling direction. BW bend axis parallel to rolling direction

Fabrication properties

Cold formability	good
Hot formability	excellent
Soldering	good
Brazing	good
Oxyacetylene welding	good
Gas shielded arc welding	good


Softening stability

Vickers hardness after heat treatment. (Temper H08, age hardened (R580S), typical values)

Stress relaxation resistance

Stress remaining as a function of temperature and time.

Measured with Cantilever-Bending-Test (ASTM E 328 – 02).

Values above 1000 h calculated with Larson – Miller – Parameters.

Initial stress 0.5·Rp0.2 (Temper H08, age hardened (R580S))

Typical uses

Automotive, Electrical engineering, Connectors, Springs