

C19700 (CuFe0.7MgP)

18 08 US

Comparable standards: UNS C19700 • JIS C1921

Aurubis designations: C197 • PNA205

Description

CuFe0.7MgP is a precipitation-hardened copper alloy. It combines extra high electrical conductivity with comparable strength and relaxation behaviour like CuFe2P. This is possible due to the reduction of the iron content and the edition of magnesium.

Composition

Cu*	Fe	Р	Mg
[%]	[%]	[%]	[%]
rem.	0.30 – 1.20	0.10 – 0.40	0.01 – 0.20

Physical properties

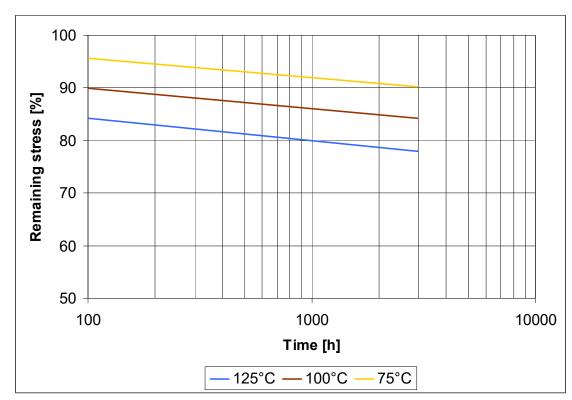
Melting point	Density	Specific heat cap. at 20°C	Electrical cond.	Thermal cond. at 20°C	Mod. of elasticity	Coef. of therm exp. at 20°C
[°F]	[lb/in³]	[Btu/lb°F]	[%IACS]	[Btu/ft h °F]	x1000 ksi	[10 ⁻⁶ /°F]
[°C]	[g/cm³]	[kJ/kgK]	[MS/m]	[W/mK]	[GPa]	[10 ⁻⁶ /K]
1987	0.319	0.092	80	185	16.7	9.6
1086	8.84	0.385	46	320	115	17.3

The specified conductivity applies to the soft condition only

Mechanical properties

	Tensile strength Rm	Yield strength Rp0.2 min	Elon- gation 2" min	Hard-ness HV	min bend ratio 90°		min. bend ratio 180°	
	[ksi] [MPa]	[ksi] [MPa]	[%]	[-]	GW	BW	GW	BW
Soft	43-53 295-365	> 16 > 110	20					
H02	53-63 365-435	> 36 > 250	6					
H04	60-70 415-485	> 53 > 365	2					
H06	67-73 450-505	> 64 > 440	2					
H08	70-76 485-525	> 67 > 460	2					
H10	73-80 505-550	> 70 > 485	1					

Other tempers are available upon request.


GW bend axis transverse to rolling direction. BW bend axis parallel to rolling direction

Fabrication properties

Soldering	excellent
Gas shielded arc welding	excellent
Resistance Welding	good
Machinability	not recommended
Cold formability	good

Stress Relaxation resistance

Stress remaining as a function of temperature and time. Initial stress 0.5 Rp0.2. Measured on stress relief annealed specimens. Temper H06.

Typical uses

Automotive, Components of electrical engineering, Connectors, Clamp ports, Clamp-Connections, Leadframes, Relays- and conductor Springs, Spring rings, Pressure gauge Springs, Retaining Clamps